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The paper presents the results of the study of the sequences of bifurcation leading to the

synchronization and amplitude death in a system of two dissipatively coupled self-sustained

oscillators with inertial nonlinearity. Two types of synchronizations tongues have been identified.

In one of them phase locking regions exist where the synchronization is achieved by the saddle-

node bifurcation and regions where the transition to synchronization leads through Neimark-Sacker

bifurcation. In the second type of the tongues there are only phase locking regions. It has been

shown that for a weak non-identity of the system parameters, the first type tongues merge together.

The transition between the synchronization tongues can occur without bifurcations, i.e., transition

between the synchronized regimes with different periods of oscillations can occur gradually.
VC 2011 American Institute of Physics. [doi:10.1063/1.3597643]

Recent investigations have shown that the coupled sys-

tems have a great potential in a large amount of applica-

tion areas ranging from physics and engineering to

economy and biology. In this paper we study the dynam-

ics of two linearly, dissipatively coupled self-sustained

oscillators with inertial non-linearity, which demon-

strates period doubling bifurcations. We give evidence

that the system behavior is characterized by a number of

peculiarities (unexpected events), such as: (i) the exis-

tence of synchronization tongues in which the regions

with different synchronization mechanism exist, (ii) the

creation of the infinitively long band between the regions

of amplitude death and quasiperiodic behavior (this phe-

nomenon has been observed previously in different sys-

tems,18 but we identify its bifurcation mechanism), (iii)

the existence of tongues which are closed on both sides (at

the bottom and at the top). We show that these peculiar-

ities allow smooth transition between the synchronization

tongues with different periods of oscillations. We argue

that the described phenomena are robust and can be

observed for the wide range of system parameters.

I. INTRODUCTION

Mutual synchronization is a fundamental property in na-

ture, observed in a large number of interacting self-sustained

oscillatory systems (see, e.g., monographs 4–10). The sim-

plest case of synchronization is the synchronization of peri-

odic oscillators, which has been intensively studied since the

pioneering work of Huegens.1,2 Typical chains of bifurca-

tions which lead to synchronization are well-known (see,

e.g., Ref. 11). Let us briefly remind the main points. First, in

the result of supercritical Andronov-Hopf bifurcation a stable

limit cycle is born from an equilibrium. Then, with further

parameters’ change the cycle undergoes Neimark-Sacker

bifurcation, after which it loses stability and gives birth of a

stable two-dimensional torus in its neighborhood. Moving

along Neimark-Sacker bifurcation line on two-dimensional

parameters’ plane we observe the synchronization domains

(Arnolds’ tongues), the boundaries of which are formed by

the lines of saddle-node bifurcations of the resonance cycles.

The last ones are saddle and stable limit cycles located on

two-dimensional torus. Arnold’s tongues lean on the line of

Neimark-Sacker bifurcation and their sequence obeys Fairys’

rule. The described sequence of the tongues forms the uni-

versal structure near the line of the torus birth. It repeats for

mutual synchronization of weakly coupled self-sustained

oscillators with different types of interaction, as well as for

external synchronization by small harmonic force.

However, over the line of Neimark-Sacker bifurcation,

the picture of synchronization becomes less universal and

more complex. A large number of publications (see, e.g.,

Refs. 13–18) are devoted to the investigation of the global

structure of synchronization regions in autonomous and non-

autonomous systems.

Peculiarities of the behavior of interaction systems

depend on both, the strength and the type of coupling. For

e.g., if the conservative coupling is considered, both the syn-

chronization phenomena and the multistability phenomena

in the system of two van der Pol oscillators are observed.19

The bistability of synchronous regimes leads to the deter-

mined peculiarities of the bifurcational mechanism of the

loss of synchronization.20 If the dissipative coupling is con-

sidered, we can observe in two self-oscillations systems not

only the mutual synchronization but the effect of amplitude
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death as well(see, e.g., Refs. 8, 12, 17–19). In this case the

transitions from equilibria to quasiperiodic and synchronous

oscillations are observed not only at a weak coupling but

also at a strong coupling. However, as it will be demon-

strated below, the weak coupling region and the strong cou-

pling region can be distinguished by the corresponding

structure of the bifurcation set in the space of control param-

eters in an essential manner. Because of it, the peculiarities

of the transitions to synchronization in the coupled systems

with amplitude death appear.

The phenomenon of oscillation quenching at increasing

mutual coupling between self-excited systems with different

natural frequencies was described first by Rayleigh in his

fundamental work “The Theory of Sound.”3 At researching

the mutual influence of the neighboring organ-pipes he

found, that “when two organ-pipes of the same pitch stand

side by side, complications ensue which do not unfrequently

give trouble in practice. In extreme cases, the pipes may

almost reduce one another to silence. Even when the mutual

influence is more moderate, it may still go so far as to cause

the pipes to speak in absolute unison, in spite of inevitable

small natural differences.” So he observed both the synchro-

nization and the oscillation quenching in dependence on the

strength of the interaction between the systems. It is well-

known (see, e.g., Ref. 8) that the oscillation quenching

occurs because of the additional dissipation in the united sys-

tem at inserting of coupling. The energy of the source of the

united self-excited system does not compensate additional

losses of energy in the channel of coupling. The mechanism

of realization of the self-oscillation quenching can be differ-

ent. Usually, three main mechanisms are distinguished:25 a

large detuning between natural frequencies at the strong cou-

pling results in oscillation quenching,21,26–28 a time-delay in

the coupling can lead to quenching,29–32 the coupling

through dissimilar (or conjugate) variables in the system of

identical oscillators can also lead to quenching.33 The oscil-

lation quenching can result in a homogeneous steady state or

an inhomogeneous steady state in the ensemble of the

coupled oscillators. In the first case, the phenomenon of os-

cillation quenching is distinguished as the amplitude death

and the second case refers to the oscillations death.25 The

phenomenon of the oscillation quenching has a universal

character and is observed in various fields, including acoustic

systems,3 coupled chemical and biological oscillators,21,25,34

coupled electrochemical oscillators,35 time-delay coupled

thermo-optical oscillators,36 and coupled electronic cir-

cuits.37 Irrespective of the nature of the system, when it hap-

pens in phase space the steady state becomes stable as the

result of supercritical or subcritical Andronov-Hopf bifurca-

tion. The appearance of the oscillations death is associated

with the pitchfork bifurcation.

The simplest model which demonstrates both the syn-

chronization and the amplitude death phenomena is the one

given by reduced van der Pole equations (also known as Lan-

dau-Stuart equation8). The phenomenon of amplitude death

has been studied also in more realistic systems of different

nature.21,22

Despite the large scale of publications concerning the

problems of the amplitude death phenomenon, some of the

questions still remain open. In particular, the bifurcational

mechanisms of the transition between quasiperiodic oscilla-

tions and amplitude death regime have been considered only

in the neighborhood of the main synchronization tongue

(1:1) (Ref. 19). How this mechanism is transformed into

other synchronization tongues with different rotation num-

bers is fairly less studied.

In this paper, we carry out the bifurcation analysis of the

phenomena of synchronization and amplitude death in a

wide region of parameters for different rotate numbers. The

system under study is two dissipative coupled self-sustained

oscillators with inertial non-linearity. The results are

obtained by the software package for bifurcational analysis

AUTO (Ref. 23). Our studies allow the identification of a

number of peculiarities (unexpected events) such as: (i) the

synchronization tongues in which the regions with different

synchronization mechanism exist, (ii) the creation of the

infinitively long band between the regions of amplitude

death and quasiperiodic behavior, which has been observed

also by other authors in different systems,18 but the bifurca-

tion mechanism of this event is revealed first in this work,

(iii) the tongues which are closed on both sides (at the bot-

tom and at the top), (iv) the tongues which are merged at

strong coupling. We give evidence that these peculiarities

allow smooth transition between the synchronization tongues

with different periods of oscillations. We argue that the

described phenomena are robust and can be observed for the

wide range of system parameters.

The paper is organized as follows. Section II introduces

the model of the considered system. The bifurcations which

occur in the neighborhood of the 1:1 principal resonance are

described in Sec. III. Section IV presents the bifurcation sce-

nario in the neighborhood of other resonances. In Secs. III

and IV the cases of identical and nonidentical oscillators are

considered. Finally, we summarize our results in Sec. V.

II. MODEL

We consider the bifurcational mechanisms of synchroni-

zation and amplitude death in the system of dissipatively

coupled self-sustained oscillators with inertial nonlinearity.

The dynamics of the system is described as follows:

_x1 ¼ m1x1 � px1z1 þ py1 þ �ðx2 � x1Þ;
_y1 ¼ �x1; _z1 ¼ �g½z1 � f ðx1Þ�;
_x2 ¼ m2x2 � x2z2 þ y2 þ �ðx1 � x2Þ; _y2 ¼ �x2;

_z2 ¼ �g½z2 � f ðx2Þ�;

(1)

where f ðx1;2Þ ¼ expðx1;2Þ � 1, x1;2, y1;2, and z1;2 are the dy-

namical variables, m1;2; g; p and � are the system parameters.

Here m1;2 are the system parameters which describe the birth

of self-excited oscillations in both subsystems (that is Andro-

nov-Hopf bifurcation in partial oscillator). g is the inertial

parameter which in our studies has been fixed to the value

g ¼ 0:2. Parameter p ¼ x1=x2 describes detuning between

fundamental frequencies x1 and x2 of partial oscillators.

In the case of � ¼ 0 both oscillators (subsystems) are

uncoupled. For negative values of the parameters m1;2 in

both subsystems the fixed points x1;2 ¼ y1;2 ¼ z1;2 are stable.
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For m1;2 ¼ 0 one observes supercritical Andronov-Hopf

bifurcations in which stable limit cycles of self-excited oscil-

lations are born. The amplitudes of these oscillations are pro-

portional to
ffiffiffiffi

m
p

. For small values of m1;2 one observes

quasiharmonic oscillations. With the increase of m1;2 the

subsystems can demonstrate both periodic and chaotic oscil-

lations. The route to the chaotic oscillations leads through

the cascade of period-doubling bifurcations. The detailed

analysis of the dynamics of the partial system with the non-

linear function f ðxÞ ¼ 0:25ðjxj þ xÞ2 is given in Ref. 24. The

partial system with nonlinearity f ðxÞ ¼ expðxÞ � 1 shows

qualitatively the same behavior.

For � 6¼ 0 coupled system (1) shows rich bifurcational

behavior. Depending on the system parameters one can

observe the synchronization of periodic and chaotic self-

oscillations, phase multistability, and the effects of ampli-

tude death. In our studies we consider the occurrence of syn-

chronization of periodic oscillations and amplitude death in

the wide range of the system parameters � and p, assuming

that the subsystems exhibit self-oscillations of period one.

III. BIFURCATIONS IN THE NEIGHBORHOOD
OF THE 1:1 RESONANCE

A. Synchronization of the systems with identical limit
cycles

Let us consider the dynamics of two coupled identical

(i.e., without additional mismatch of the excitation parame-

ters m1;2) oscillators. We fixed m1 ¼ m2 ¼ m ¼ 0:1 and con-

sidered the dependence of the system (1) behavior on the

parameters: � and p. For the assumed value of m, partial

oscillators (subsystems) show quasiharmonic oscillations.

First, we follow the stable and unstable periodic orbits

and their bifurcations in the principal 1:1 synchronization

region. In Fig. 1 we present the bifurcation lines of the stable

and unstable limit cycles and unstable fixed points in the

principal 1:1 synchronization region. The synchronized

oscillations exist in the regions A and B. These regions are

surrounded by the regions of quasiperiodic oscillations C
and amplitude death D. For the system parameters in region

A bounded by the bifurcation lines lSN, l0SN , and lSR, system

(1) has unstable fixed point PR, three saddle limit cycles CS,

CP, CR, and stable limit cycle CN as shown in Figs. 2(a) and

2(b). The limit cycles represent the synchronous oscillations

with different phase shifts between the oscillations of the

subsystems. At p ¼ 1 stable limit cycle Cn represents the

complete synchronization, i.e., x1 ¼ x2; y1 ¼ y2; z1 ¼ z2. The

antiphase synchronization (phase difference equals to p) is

manifested by the saddle limit cycle CS. Saddle cycles CR

and CP represent the phase synchronization of subsystems

with the phase difference between the interval ½0; pÞ-cycle

CR and ðp; 2p�-cycle Cp. Cycles CP and CR are symmetrical

in the relation to cycle CS as can be seen in Fig. 2(b).

The computation of the eigenvalues of fixed point PR

shows that it is a saddle (saddle-focus), in which two pairs of

complex-conjugate eigenvalues have positive real parts and

two other eigenvalues are real and negative. The analysis of

the Floque multiplicators of the limit cycles shows that the

FIG. 1. Bifurcation diagram of the system (1) in the main area of synchroni-

zation region S1:1 on the plane of control parameters ð�� pÞ (coupling coef-

ficient, detuning parameter): m1 ¼ m2 ¼ 0:1, g ¼ 0:2.

FIG. 2. Projections of the phase portrait of the trajectories of system (1);

m1 ¼ m2 ¼ 0:1, g ¼ 0:2, � ¼ 0:025, p ¼ 1:001: (a) on the plane ðy1 � x1Þ,
(b) on the plane ðx2 � x1Þ. In phase space there are unstable fixed point PR,

saddle limit cycles CS, CP, CR and stable limit cycle CN .
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cycles CP and CR have three-dimensional stable and unstable

manifolds. The cycle CS posses four-dimensional stable and

two-dimensional unstable manifolds. Cycles CN and CS are

resonance ones and lie on the two-dimensional torus. Let us

follow the bifurcations of these limit cycles and fixed point

PR on the plane of parameters (�� p).

Figure 3 shows the bifurcation diagram for the limit

cycles and the fixed point, depending on the detuning

between frequencies p for a fixed value of coupling coeffi-

cient � ¼ 0:025. In this diagram on the vertical axis the max-

imum values of dynamic variable x1 ¼ xmax for the limit

cycles and the fixed point (for the fixed point PR the dynamic

variable is zero) are shown. In the middle of the synchroniza-

tion interval the stable cycle of CN and the saddle cycle CS

have two pairs of complex conjugate multipliers with mod-

ula less than one, and two real multipliers, respectively,

smaller and larger than one. The saddle cycles of CR and CP

have pairs of real multipliers larger than one, pairs of

complex-conjugate multipliers with modula smaller than one

and single real multiplier smaller than one. When leaving

area A as the result of the change of detuning parameter p,

the bifurcations of the synchronous mode take place on the

lines lSN and l0SN. Located on the torus the stable limit cycle

CN and the saddle cycle CS approach each other when the

control parameter p to bifurcation approaches lines lSN and

l0SN . On these lines they merge together, one real multiplier

of each cycle equals to þ1 and after the point of bifurcation

(in the region C of Fig. 1) they vanish and in the phase space

there exists a stable two-dimensional ergodic torus. The

phase trajectories on it are never closed. On this torus we

observe quasiperiodic oscillations with two incommensurate

frequencies. With further increase of the control detuning pa-

rameter p the saddle cycles CR, CP, and the fixed point PR go

out of the synchronization region A. At this exit they do not

undergo any bifurcations and continue to have three-dimen-

sional stable and three-dimensional unstable manifolds.

Thus, in the region of the quasiperiodic oscillations of the C
the phase portrait of system (1) consists of the stable ergodic

torus, the saddle limit cycles CR, CP, and the unstable fixed

point of PR (located in the origin).

Now let us consider what happens with the increase of

the coupling coefficient �. We fix m ¼ 0:1, p ¼ 1:034, and

follow the bifurcations of the above mentioned limit sets.

The bifurcation diagram is shown in Fig. 4. In the case of the

weak coupling in the phase space, there exist the stable torus,

the saddle cycles CP and CR, the unstable fixed point PR.

With an increase of � when crossing line lSN (see Fig. 1), the

stable limit cycle of CN and the saddle cycle of CS are born

on the torus. At the bifurcation diagram (Fig. 4), this corre-

sponds to the point bSN , from which two branches originate.

The solid line is formed by the values of the dynamical vari-

able on stable cycle of CN , and the broken line by the values

of this variable on the saddle cycle CS. With further increase

of the coupling coefficient the subcritical pitchfork bifurca-

tion takes place on the line lSR in the parameter plane ð�� pÞ
(Fig. 1). The saddle cycles CP and CR approach the saddle

cycle CS and merge into it on the line lSR. Above the point of

this bifurcation a saddle limit cycle CS remains, but has sta-

ble and unstable manifolds of a different character. The anal-

ysis of multipliers of these cycles shows that up to the

bifurcation point saddle cycles CP and CR have three-dimen-

sional stable manifolds and three-dimensional unstable mani-

folds, and the saddle cycle CS four-dimensional stable and

two-dimensional unstable manifolds which are enclosed by a

stable limit cycle, forming a two-dimensional torus. After

the point of the subcritical pitchfork bifurcation the saddle

limit cycle CS has three-dimensional stable and unstable

manifolds. This leads to the destruction of two-dimensional

torus, on which the resonant cycles are located. At the bifur-

cation diagram of Fig. 4 the pitchfork bifurcation is denoted

by bp. For the values of the coupling coefficient from the

region bounded by the lines lSR and l2H in the ð�� pÞ param-

eter plane of Fig. 1, the phase portrait of the system (1) con-

sists of an unstable fixed point PR, the saddle limit cycle CS,

and the stable limit cycle CN . Above the line lSR two-dimen-

sional torus does not exist anymore; it is destroyed in a sub-

critical pitchfork bifurcation of a saddle limit cycle CS.

This bifurcation is connected with the transition from

the phase locking region A to the region B inside the main

FIG. 3. Bifurcation diagram of the fixed point PR and limit cycle CN , for

different values of the coefficient p: m1 ¼ m2 ¼ 0:1, g ¼ 0:2 � ¼ 0:025.

FIG. 4. Bifurcation diagram of the fixed point PR and limit cycles CP, CN ,

CS and CR for different values of the coupling coefficient �: m1 ¼ m2 ¼ 0:1,

g ¼ 0:2, p ¼ 1:034.
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synchronization tongue S1:1 (see Fig. 1). With further

increase of � the radius of saddle limit cycle CS decreases.

On the line l2H it shrinks to the unstable fixed point PR and

we observe Andronov-Hopf bifurcation. Before the bifurca-

tion the fixed point PR has two pairs of complex conjugate

eigenvalues with positive real parts and two real negative

eigenvalues. After the bifurcation the point has a pair of

complex eigenvalues with positive real parts and a pair of

such eigenvalues with negative real parts, two real eigenval-

ues remain negative and equal to –0.2.

For the strong coupling coefficient �, above the line l2H in

synchronization region B of Fig. 1, in the phase space the stable

limit cycle CN and the unstable fixed point PR exist. In this

case the increase of the detuning parameter p leads to the am-

plitude death effect. As the detuning between characteristic fre-

quencies p ¼ x1=x2 increases, the amplitude of oscillations in

each of the generators decreases to zero. Figure 5 shows the

bifurcation diagram for the limit cycle CN and the fixed point

PR for different values of the detuning parameter p and the

fixed values of m1 ¼ m2 ¼ 0:1, g ¼ 0:2, and � ¼ 0:125.

When the natural oscillations frequencies of the partial oscilla-

tors are equal (p ¼ 1) the radius of a stable limit cycle CN , cor-

responding to the synchronization regime has a maximum

value. With the increase or decrease of the detuning parameter

p this radius smoothly decreases, cycle CN shrinks to the fixed

point PR at the origin. At the transition from the region B to the

region D the fixed point PR undergoes bifurcation from an

unstable saddle-focus in the stable focus so we have a super-

critical Andronov-Hopf bifurcation. In the region D, system (1)

has only one attractor in the phase space: a stable fixed point

PR. The self-oscillations are absent as the coupling results in

their suppression, despite the fact that each of the subsystems

is in an excited state for � ¼ 0.

At the transition from region D to region B (Fig. 1) (e.g.,

at a fixed coupling coefficient � and changing detuning pa-

rameter p), periodic oscillations are smoothly excited. How-

ever, at the transition from region D into region C, with the

decrease in the coupling � and fixed detuning p, one observes

soft excitation of the quasi-periodic oscillations. The bifurca-

tional lines lH and l0H define the boundaries between the

regions of amplitude death and quasiperiodic oscillations.

In region D, up to the lines lH and l0H, the fixed point PR

has two pairs of complex-conjugate eigenvalues with negative

real parts and two real negative eigenvalues. On the lines lH

and l0H the real parts of the complex conjugate eigenvalues

vanish (two pairs of purely imaginary eigenvalue), and below

these lines are positive. This results in the smooth birth of the

attracting torus T and saddle cycles of CP and CR in the vicin-

ity of the fixed point PR. With the decrease of the coupling

coefficient �, these limit sets (the fixed point, two saddle limit

cycles, and the attracting torus) diverge from each other.

The described bifurcation of the birth of the attracting

torus and the two saddle cycles from a fixed-point is degen-

erated due to the identity of the partial oscillators (the excita-

tion parameters m1 and m2 are equal). The identity of the

control parameters in the uncoupled generators results not

only in this degenerate situation but also in the pitchfork

bifurcation, which occurs on line lSR in the main synchroni-

zation tongue S1:1 (Fig. 1) and which involves saddle cycles

CS, CP, CR (see bifurcation diagram in Fig. 4). The introduc-

tion of non-identity oscillators in the parameters m1;2 elimi-

nates this degeneracy and results in the typical bifurcation

transitions.

B. The effect of the additional mismatch of the
excitation parameters ðm1 6¼ m2Þ on the bifurcation
mechanism of the synchronization and the amplitude
death

We consider the dynamics of the weakly non-identical

generators in the neighborhood of the main synchronization

tongue S1:1 in more details. Figure 6 presents the bifurcation

diagram of the system (1) on the plane of control parameters

(�� p) for the weakly non-identical oscillators (m1 ¼ 0:105,

m2 ¼ 0:1). Here, as in the identical case, the synchronization

regions are denoted by A and B, the region of quasi-periodic

oscillations by C and the region of the amplitude death by D.

It is evident that the weak nonidentity of the subsystems

FIG. 5. Bifurcation diagram of the fixed point PR and limit cycle CN , for

different values of the coefficient p: m1 ¼ m2 ¼ 0:1, g ¼ 0:2, e ¼ 0:125.

FIG. 6. Bifurcation diagram of the system (1) in the main area of synchroni-

zation region S1:1 on the plane of control parameters ð�� pÞ, (coupling coef-

ficient, detuning parameter): m1 ¼ 0:105, m2 ¼ 0:1, g ¼ 0:2.
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leads to a significant change in the structure of the parameter

space. On the boundary between areas C and D, a narrow

channel in which there exists a stable limit cycle correspond-

ing to the regime of the synchronization appear. This channel

exists for a wide range of detuning parameter p.

The appearance of this channel makes a qualitative

change in the structure of the bifurcation transitions. Let us

analyze this change in details. In region A the phase portrait

of system (1) is the same as in the previous case of identical

subsystems (Fig. 2). It consists of an unstable fixed point PR,

the saddle cycles CP, CR, and the resonant cycles on the torus

T, i.e., a saddle cycle CS and a stable cycle CN . For the

decreasing values of � the exit from the synchronization

region occurs on the lines lSN and l0SN through the saddle-

node bifurcation of the limit cycles CN and CS. The phase

portraits and the sequences of bifurcations are the same as in

the identical subsystems case.

The changes in the structure of the parameter space are

observed for larger values of �. Figure 7 shows the bifurca-

tion diagram of the limit cycles and the fixed point for the

increasing values of � and the low fixed value of frequency

detuning (p ¼ 1:034). For the weak coupling, left point bSN

(in Fig. 6 below the line lSN), in the phase space an unstable

fixed point PR, two saddle limit cycles CP, CR, and the stable

two-dimensional torus T exist. With the increase of the cou-

pling, the bifurcation takes place in the point bSN and a pair

of limit cycles CN and CS is born on the torus T. With further

increase of coupling parameter � the saddle limit cycle CS

with two-dimensional unstable and four-dimensional stable

manifolds approach the other saddle limit cycle CR charac-

terized by three-dimensional stable and unstable manifolds.

At the point bSR they merge together and disappear. This

leads to the destruction of torus T, on which the resonance

limit cycles, stable CN and saddle CS, have been located. As

can be seen in Fig. 7 with an increase of the coupling, a sad-

dle limit cycle CP initially increases in size and then gradu-

ally decreases. At the point bAH it undergoes Andronov-Hopf

bifurcation. Fixed point PR changes its stability from an

unstable saddle-focus with two pairs of complex conjugate

eigenvalues with positive real parts to unstable saddle-focus,

which has one pair of complex conjugate eigenvalue with

negative real and one pair with positive real parts. (Two

remaining real and negative eigenvalues do not change at

this bifurcation). In the synchronization region B in the phase

space an unstable fixed point PR and the stable limit cycle

CN exist. Thus, a small additional mismatch of the parame-

ters m1;2 results in the elimination of the pitchfork bifurca-

tion. Now the destruction of the torus during the transition

from the synchronization region A to the synchronizations

region B occurs as the result of saddle-saddle bifurcations of

two limit cycles CS and CR.

Figure 8 shows another bifurcation diagram of the limit

cycles CR, CP, CN , and fixed point PR for larger detuning

(p ¼ 1:12). It describes the bifurcations leading to effect of

the amplitude death at the transition, from the region of

quasi-periodic oscillations C to the region of the amplitude

death D. For the weak coupling in the phase space a two-

dimensional attracting torus T, the saddle limit cycles CP,

CR, and unstable fixed point PR (at the origin) exist. With the

increase of �, the radius of the saddle limit cycle CP initially

increases. Then it decreases and shrinks to the fixed point

PR. At the point b2H Andronov-Hopf bifurcation is observed

which in the parameters plane (�� p) corresponds to the

bifurcation line l2H (see Fig. 6). After this bifurcation the

fixed point PR has a pair of complex conjugate eigenvalues

with a positive real parts, a pair of such eigenvalues with

negative real part and two real negative eigenvalues. At the

same time with the increase of � the size of a saddle limit

cycle CR decreases, and after point bN in the bifurcation dia-

gram of Fig. 8 it turns from the saddle to the stable limit

cycle. This corresponds to the Neimark-Sacker bifurcation.

The stable two-dimensional torus contracts to a saddle limit

cycle CR which after the bifurcation becomes stable. In Fig.

6 this bifurcation occurs on lN on which quasiperiodic oscil-

lations are replaced by periodic oscillations. With further

increase of the coupling, the radius of a stable limit cycle

decreases to zero and the cycle CR is contracted to the

FIG. 7. Bifurcation diagram of the fixed point PR and limit cycles CP, CN ,

CS and CR for different values of the coupling coefficient �, and additional

mismatch: m1 ¼ 0:105, m2 ¼ 0:1, g ¼ 0:2, p ¼ 1:034.

FIG. 8. Bifurcation diagram of the fixed point PR and limit cycles CP, CN ,

CS and CR for different values of the coupling coefficient �, and additional

mismatch: m1 ¼ 0:105, m2 ¼ 0:1, g ¼ 0:2, p ¼ 1:12.
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unstable fixed point PR, in the Andronov-Hopf bifurcation

(point b1H in Fig. 8). After this the fixed point becomes sta-

ble in system (1) and the complete suppression of self-oscil-

lations is observed.

IV. THE BIFURCATION ANALYSIS OF THE
OSCILLATORY REGIMES IN A NEIGHBORHOOD
OF SYNCHRONIZATION MODE n : m

In Sec. III we have analyzed the bifurcations which

occur in the main area of synchronization S1:1 and its neigh-

borhood for different values of coupling and detuning pa-

rameters (� and p, respectively). In this section we

investigate the bifurcations which occur in other synchroni-

zation regions.

A. The case of two oscillators with identical excitation
parameters m1 ¼ m2

Figure 9 shows the synchronization tongue of system (1)

with different values of rotation numbers which are located

on the right side of the main synchronization region S1:1.

Both subsystems are identical m1 ¼ m2 ¼ 0:1 and g ¼ 0:2
and in the lack of coupling (� ¼ 0) are characterized by qua-

siharmonic oscillations. It is evident that in comparison with

the main synchronization tongue ðS1:1Þ the additional syn-

chronization tongues S1:2; S1:3; S2:3; S3:4 are considerably nar-

rower and limited at the top by the amplitude death region

D. They start at the line � ¼ 0 and terminate on the line l0H .

Both at the bottom and at the top they converge to a single

point. According to their bifurcation structure these tongues

are qualitatively different. In regions S2:3 and S3:4 one can

observe the synchronization at saddle-node bifurcation while

in tongues S1:2 and S1:3 two synchronization regions (A and

B) are present. Figures 10(a) and 10(b) show in larger scale

the synchronization tongues S1:2 and S2:3, respectively. The

synchronization tongue S1:2 has A1:2 and B1:2 regions. The

region A1:2 is bounded by the lines of saddle-node bifurca-

tion lSN , l0SN and lSR. The region B1:2 is bounded by the line

of saddle-node bifurcation lSR and the lines Neimark-Sacker

bifurcation lSN and l0SN . With the decrease of coupling, the

lines of saddle-node bifurcations lSN and l0SN join each other

on the axis � ¼ 0. With an increase of the coupling, the lines

of Neimark-Sacker bifurcation l1
N , l1N converge to the same

point on the line l0H which bounds the region of the amplitude

death D. The synchronization tongue S2:3 has only synchro-

nization region A2:3, which is bounded by the lines of saddle-

node bifurcation lSN and l0SN . Both with the decrease and

increase of coupling, these lines converge to the points on

the line � ¼ 0 and l0H, respectively.

Figure 11 shows the projections of phase portraits in the

regions A1:2 and A2:3. In both cases, the phase portrait con-

sists of the unstable fixed point PR, saddle limit cycles CP

and CR, as well as the resonant limit cycles CS and CN ,

located on two-dimensional torus T.

The limit cycle CN is stable and represents the synchro-

nization regime. The saddle limit cycle CS has a two-dimen-

sional unstable manifold on which the stable limit cycle CN

is locked and four-dimensional stable manifold. The stability

types and the periods of the saddle limit cycles CP and CR

FIG. 9. Synchronization regions with different rotation numbers S1:1, S1:2,

S1:3, S2:3, S3:4 and the amplitude death region D on the plane of system (1)

parameters (�� p): m1 ¼ m2 ¼ 0:1, g ¼ 0:2.

FIG. 10. Synchronization tongues of the system (1): m1 ¼ m2 ¼ 0:1,

g ¼ 0:2. (a) Tongue S1:2, containing the region A1:2 and the region B1:2; (b)

tongue S2:3 containing only region A2:3.
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are the same for the wide range of coupling coefficient � in

all synchronization tongues. With the change of the detuning

parameter p, these saddle cycles do not undergo any bifurca-

tions. The resonance limit cycles on the torus CN and CS

exist only in the phase locked synchronization tongues and

in different tongues have different periods [see Figs. 11(a)

and 11(b)]. When changing the detuning parameter p they

disappear.

Let us examine the changes of the phase portraits pre-

sented in Figs. 11(a) and 11(b) which occur with the increase

of the coupling coefficient � and the fixed values of other pa-

rameters. Figure 12(a) presents the bifurcation diagram for

the fixed point PH and limit cycles CS, CN , CP, and CR for

different values of � in the synchronization tongue S1:2

(p ¼ 0:495). In Figure 12(b) the enlargement of the part of

Figure 12(a) is shown.

At the weak coupling [in region C, below the line l0SN on

the parameter plane of Fig. 10(a)] in the phase space, an

unstable fixed point PR, the saddle limit cycles CP, CR, and

the stable two-dimensional torus corresponding to the regime

of quasi-periodic oscillations exist. The fixed point PR has

two real negative eigenvalues and two pairs of complex con-

jugate eigenvalues with positive real parts. The saddle limit

cycles CP and CR have three-dimensional stable and unstable

manifolds. The limit cycle CP is born as the result of the

Andronov-Hopf from the unstable fixed point PR on the line

� ¼ 0. The saddle limit cycle CR is surrounded by the attract-

ing two-dimensional torus T. With the increase of the cou-

pling, while crossing line l0SN [Fig. 10(a)] a pair of resonant

limit cycles: saddle CS and stable CN is born on the torus. On

the bifurcation diagram in Figs. 12(a) and 12(b) the interval

of coupling parameter �, for which resonant cycles CN and

CS exist, coincides with phase locked region A1:2. With fur-

ther increase of coupling the saddle-saddle bifurcation is

observed. The limit cycle CR with three-dimensional stable

and unstable manifolds merges with the resonant limit cycle

CS characterized by two-dimensional unstable and four-

dimensional stable manifolds. After the bifurcation point the

resonant cycles disappear. There is a destruction of the torus,

then in the phase space there exist a stable limit cycle CN ,

the saddle limit cycle CP, and an unstable fixed point PR. In

Fig. 10(a) this corresponds to the transition from region A1:2

FIG. 11. Projections of the phase portraits of the trajectories of the system

(1): m1 ¼ m2 ¼ 0:1, g ¼ 0:2. (a) In the synchronization tongue S1:2:

e ¼ 0:025, p ¼ 0:498 (region A1:2), (b) in the synchronization region S2:3:

e ¼ 0:025, p ¼ 0:665.

FIG. 12. (a) Bifurcation diagram of the fixed point PR and limit cycles CP,

CN , CS and CR for different values of the coupling coefficient �:
m1 ¼ m2 ¼ 0:1, g ¼ 0:2 in the synchronization tongue S1:2 (p ¼ 0:495), (b)

enlargement of (a).
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to the synchronization region B1:2. With further increase of

the coupling parameter � Neimark-Sacker bifurcation occurs

[point b1 in Fig. 10(a)], limit cycle CN loses its stability and

stable two-dimensional torus is born. This bifurcation corre-

sponds to the transition from the synchronization tongue S1:2

to the region of quasiperiodic oscillations. In the range of the

values of coupling coefficient, bounded by the points b1 and

b2, in the phase space: the unstable fixed point PR, the saddle

limit cycles CR, CP and two-dimensional torus T exist. When

approaching point b2 (in the bifurcation diagram), torus T
and limit cycles CR, CP shrink to a fixed point PR. In this

bifurcation fixed point PR becomes stable. In Fig. 10(a) this

bifurcation corresponds to the transition to the region D (am-

plitude death). The described bifurcation, when the torus and

two cycles simultaneously converge into a fixed point is pos-

sible due to the identity of excitation parameters m1 ¼ m2

and inertial parameters g1 ¼ g2 in both subsystems.

Changing the coupling coefficient � inside the synchro-

nization tongue S2:3, one observes simple transformations of

the phase portraits [Fig. 11(b)]. For any value of p in the

neighborhood of S2:3 [see Fig. 10(b)] the phase portrait con-

sists of the unstable fixed point PR, the saddle limit cycles

CP, CR, and the attractive two-dimensional ergodic torus T
which corresponds to the regime of quasi-periodic oscilla-

tions. At the boundaries of tongue S2:3 the saddle-node bifur-

cation of the resonant limit cycles CS and CN located on the

torus T occurs. With the increase of coupling, when crossing

line l0H the degenerate bifurcation occurs—the saddle cycles

CP, CR, and stable two-dimensional torus T shrink to fixed

point PR. PR becomes stable and the amplitude death is

observed in system (1).

Thus, for the case of identical excitation ðm1 ¼ m2Þ and

inertial ðg1 ¼ g2Þ parameters of the interacting oscillators

one can observe the synchronization tongues with different

rotation numbers and region of the amplitude death on the

plane of the considered control parameters, i.e., the coupling

coefficient � versus the detuning of the natural frequencies p.

The synchronization tongues with the rotation numbers dif-

ferent from 1:1 are limited to the given intervals of the cou-

pling coefficient �. Their boundaries converge to a single

point not only on the axis � ¼ 0, but also on the boundary l0H,

representing the boundary of the amplitude death region D.

The synchronization tongues can be divided into two groups.

Some of them contain both A and B synchronization regions,

while others only the A regions.

B. The effect of the asymmetry of subsystems on the
transitions to synchronization regimes

Now we consider how the bifurcation structure is

changed in the case of different excitation parameters in both

subsystems, i.e., m1 6¼ m2. Weak non-identity of excitation

parameters m1 and m2 leads to the significant changes in the

structure of bifurcations in the neighborhood of the boundary

of the amplitude death region D. The results presented in Fig.

13 have been calculated for the same values of the control pa-

rameters as the results of Fig. 9, except the small additional

mismatch 0.005 in the excitation parameters ðm1 ¼ 0:105;
m2 ¼ 0:1; g1 ¼ g2 ¼ 0:2Þ. One can notice that the weak

nonidentity leads to the splitting of the boundary of the region

D. Instead of one line l0H (as in Fig. 9) three bifurcation lines

are observed (Fig. 13), namely, l01H—line of the bifurcation in

which a stable limit cycle CN is born out of the stable fixed

point PR; l2H—the birth of saddle limit cycle CP out of unsta-

ble fixed point PR; l0N—two-dimensional stable torus T is born

out of the stable limit cycle CN . As the result of the described

boundary splitting a channel that separates the region of

quasi-periodic oscillations C and region of amplitude death D,

in which there exists a stable limit cycle CN has been created.

Inside the channel the limit cycle CN does not undergo any

bifurcations.

In the previous case, of equal values m1 and m2 (Fig. 9)

the boundaries of the synchronization tongues converge to a

point both for the decrease and increase of the coupling pa-

rameter. All of the synchronization tongues have been closed

and transitions between synchronous oscillations with differ-

ent rotation numbers occur only through the bifurcation of

the appropriate stable limit cycles.

For weak non-identity of m1 and m2 (Fig. 13), the syn-

chronization tongues S2:3 and S3:4, consisting only of the

phase locked synchronization region, remain closed. With

the increase of coupling their boundaries converge to a point

on line l0n (the birth of torus bifurcation). At the same time,

the synchronization tongues S1:1, S1:2, S1:3, consisting of A
and B synchronization regions merge together and become

open. With an increase of coupling their upper boundaries do

not converge to a single point. As a result, a stable limit

cycle CN can be “transferred” from the phase locking syn-

chronization region of one of the open synchronization

tongues to the phase locking region of another open synchro-

nization tongue, without undergoing any bifurcation. The

transitions between the synchronization tongues with differ-

ent rotation numbers can be achieved without any bifurcation

in a smooth evolutionary manner.

Figure 14 shows the open S1:2 and the closed S2:3 syn-

chronization tongues. The phase portraits in the phase lock-

ing synchronization regions A1:2, A2:3 are qualitatively the

FIG. 13. Synchronization regions with different rotation numbers S1:1, S1:2,

S1:3, S2:3, S3:4 and the amplitude death region D on the plane of system (1)

parameters (�� p): m1 ¼ 0:105, m2 ¼ 0:1; g ¼ 0:2
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same as in the case of identical ones presented in Fig. 11. Let

us investigate the transformation of phase portraits, depend-

ing on the changes of the coefficient of coupling � (with fixed

value of detuning parameter p) inside the synchronization

tongues S1:2 and S2:3.

The boundaries of S2:3 consist of a line of saddle-node

bifurcations which with the increase of coupling converge to

a point on line l0N of the birth of the torus T, i.e., there is

always a saddle-node bifurcation to the torus T in which the

resonance limit cycles CN and CS [Fig. 11(b)] merge and dis-

appear. With the increase of �, two-dimensional torus T
decreases and shrinks to the saddle limit cycle CR, which

above the line l0N becomes stable. Simultaneously another

saddle limit cycle CP decreases and on the line l2H shrinks to

unstable fixed point PR. This corresponds to Andronov-Hopf

bifurcation, after which the saddle fixed point with four-

dimensional unstable manifold transforms to a saddle fixed

point with two-dimensional unstable manifold (one pair of

complex-conjugate eigenvalues with positive real parts). As

the result of this, in the channel separating the region of

quasi-periodic oscillations C and the region of amplitude

death D, the phase portrait consists of the stable limit cycle

and the unstable fixed point of the form of a saddle-focus.

With further increase of the coupling coefficient �, a stable

limit cycle shrinks to a fixed point on the line l01H where

Andronov-Hopf bifurcation occurs. After this bifurcation

fixed point, PR becomes stable and self-oscillations vanish.

Let us investigate the transformation of phase portraits

inside the phase locking synchronization region A1:2 [Fig.

11(a)]. Figure 15 presents the bifurcation diagrams for the

fixed point PR, the limit cycles CP, CR, CS, and CN in the

synchronization tongue S1:2, and in its neighborhood.

For p ¼ 0:496 [Fig. 15(a)] and weak coupling

(0 < � � 0:05) in the phase space, an unstable fixed point

PR, the saddle limit cycle CP, and the saddle limit cycle CR

which is surrounded by two-dimensional stable torus T exist.

In the system (1) the quasi-periodic oscillations are observed.

With the increase of coupling � at the entrance to the phase

locking synchronization region, a saddle-node bifurcation is

observed on the torus T and the resonant cycles CN (stable)

and CS (saddle) are born. Next, the transition from the region

A to the synchronization region B occurs as the result of the

FIG. 14. Synchronization tongues of the system (1) with additional mis-

match m1 ¼ 0:105, m2 ¼ 0:1, g ¼ 0:2: (a) tongue S1:2, containing the region

A1:2 and the region B1:2, (b) tongue S2:3 containing region A2:3.

FIG. 15. Bifurcation diagrams of the fixed point PR and limit cycles CP, CN ,

CS, and CR for different values of the coupling coefficient �: m1 ¼ 0:105,

m2 ¼ 0:1, g ¼ 0:2; (a) in the synchronization tongue S1:2 (p ¼ 0:496), (b)

right of the tongue S1:2 (p ¼ 0:499).
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destruction of two-dimensional torus in the bifurcation, in

which the resonant saddle limit cycles CS and CR merge to-

gether and disappear. The stable limit cycle CN does not

undergo any bifurcation, i.e., with an increase of coupling �
the synchronization state continues to occur in the channel

separating the region of quasi-periodic oscillations C and the

region amplitude death D.

In the neighborhood of tongue S1:2 for p¼ 0.499 with

the variation of the coupling parameter, saddle-node bifurca-

tions on the torus are not observed. With the increase of �, a

stable limit cycle CN is observed in the synchronization

region of system (1). There is a transition from quasi-peri-

odic to periodic oscillations, but it happens as a result of sec-

ondary Andronov-Hopf (or Neimark-Sacker) bifurcation.

With further increase of coupling when approaching point b3

on the bifurcation diagram of Fig. 15(b), the attracting two-

dimensional torus shrinks to a saddle cycle CR. Beyond point

b3 the torus disappears and the unstable limit cycle CR

becomes stable and the synchronization region B appears.

With further increase of coupling � (when the crossing point

b1), the stable limit cycle CN shrinks to the fixed point PR

which turns into a stable one. Thus, we observe the transition

from the region of periodic oscillations to the region of am-

plitude death.

The introduction of a small additional mismatch of the

excitation parameters m1 and m2 in partial oscillators induces

a qualitative change in the structure of the bifurcation set.

On the plane of parameters the line of the degenerate bifur-

cation from the stable fixed point to the stable two-dimen-

sional torus splits into three lines (two Andronov-Hopf

bifurcations, and one Neimark-Sacker bifurcation). As the

result, the channel that separates the region of the stable

torus (ergodic or resonance) and the region of the stable fixed

point is created. There is a stable limit cycle. At this transfor-

mation of the structure, the bifurcation set synchronization

tongues S1:1, S1:2, S1:3 merge.

V. CONCLUSIONS

The paper describes the dynamics of two dissipatively

coupled generators with the inertial nonlinearity. We investi-

gate the bifurcation transitions in the regimes of synchroni-

zation and the amplitude death. In the plane of control

parameters we calculated the corresponding lines of the

bifurcations for the cases of identical and weakly non-identi-

cal subsystems.

We identify the bifurcation set which creates the infini-

tively long band between the regions of amplitude death and

quasi-periodic behavior, the so-called broadband synchroni-

zation.18 Additionally, it is shown that the synchronization

tongues can be of two types: in one type there exist two (A
and B) synchronization regions, while in the second one only

the phase locking synchronization region exists. For weak

non-identity of the excitation parameters the first type of

tongues and the existence of the infinitively long band

between the regions of amplitude death and quasiperiodic

behavior allow the possibility of transition from one syn-

chronization tongue to another one without bifurcation of a

stable limit cycle, i.e., the transitions between the synchronized

tongues with different rotation numbers can proceed in an

evolutionary manner. This is due to the fact that the Nei-

mark-Sacker bifurcation lines which limit the synchroniza-

tion tongues converge to the points and thus open and unify

synchronization tongues S1:1, S1:2, S1:3.
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