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Controlling chaos by chaos in geophysical systems 
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Abstract. Using the Lorenz equations as an example we 
show that one chaotic system can be controlled by synchro- 
nizing its behavior with the chaotic behavior of another 
system. We particularly discuss the implications of this 
phenomenon in geophysical systems. 

The difficulty of carrying out long-term predictions of 
atmospheric dynamics and the evolution of climate is a 
problem of obvious concern. Nowadays there is increasing 
awareness that deterministic chaos might provide a possible 
paradigm for the complexity of atmospheric and climatic 
dynamics. Periodicity is not the first apparent characteristic 
of the behavior of many geophysical fluid dynamic systems, 
but atmospheric and oceanic flows often exhibit substantial 
coherent features, localized in either or both of space and 
time, which occur sporadically and unpredictably but with 
a certain statistical regularity which can be important in 
extended-range atmospheric prediction. Such features are 
exemplified by blocking patterns in the mid-latitude atmo- 
sphere, or by persistent anomalies of the ocean-atmosphere 
system (of which E1 Nino is the spectacular example 
[McCreary and Andeson, 1991, Brindley et al., 1992]); their 
presence coincides with temporary and localized improve- 
ment in potential predictability. 

In this letter we propose a mechanism for reduction in 
chaos which could affect atmospheric potential predictability 
based on the continuous chaos control scheme [Pyragas, 
1992, 1993, Qu et al., 1993]. 

We consider two chaotic systems, which we call A and B 
respectively, 

i = f(x) 
(1) 

9 -- 

where x,yeR n, and we use the controlling strategy which is 
schematically illustrated in Figure 1' the two systems are 
coupled through the operators 3,, /•, which we take to have 
a very simple linear form. We assume that some or all state 
variables of both systems A and B can be measured, so that 
we can measure signal x(t) from the system A and signal y(t) 
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from B, and that the systems are coupled in such a way that 
the differences D1,2(t) between the signals x(t) and y(t) are 
used as control signals 

F•(O = •,[x(O -y(t)] = •,D•(t) 
(2) 

•(0 = •[y(t) - x(0] = • 

introduced respectively into each of the chaotic systems A 
and B as a negative feedback. We take X, t•>0 to be 
experimentally adjustable weightings of the perturbation. 

Using the coupling schematically shown in Figure 1 we 
have shown that one chaotic system coupled with the other 
one can significantly change the behavior of one of them 
(unidirectional coupling, i.e., X or t•=0) or of both systems 
(mutual coupling, i.e., X, /•:/:0). This property allows us to 
describe the above procedure as the controlling chaos by 
chaos method. 

Propositions 1 and 2 presented in the Appendix give 
rigorous conditions under which chaotic attractors of systems 
A and B are equivalent (Proposition 1), or the evolution of 
one of them is forced to take place on the attractor of the 
other one (Proposition 2). Derailed investigation of the 
question of equivalence of chaotic attractors is given 
elsewhere [Kocarev and Kapitaniak, 1994]. Here we 
describe some applications of controlling chaos by chaos in 
geophysical systems, pointing out that, even when the 
conditions of Propositions 1 and 2 are not fulfilled the 
introduction of coupling can still have practical importance. 

In our numerical examples we first consider two Lorenz 
models [Lorenz, 1963, 1965] mutually coupled in the 
following way 

J•l = - øXl + o r• + Z (X 2 - Xl) 

g•=-x•-z•+r• x•-r•+x(r 2-r 0 

(3) 

-- - + + - r9 

- - - + - z9 
where a, r•, 2 and b are constants. The Lorenz model has 
often been proposed as a paradigm for the "chaotic" extra- 

1257 



1258 BRINDLEY ET AL.' CONTROLLING CHAOS BY CHAOS IN GEOPHYSICAL SYSTEMS 

Chaotic system 

Chaotic B I system 

I 

y 

Figure 1. Scheme of controlling procedure. 

tropical atmospheric circulation [Palmer, 1993]. The 
variables X, Y and Z then represent in some broad sense 
Rossby wave components of the extratropical general 
circulation. Coupling between two Lorenz models introduced 
in eq. (3) might then be interpreted as mutual interdepen- 
dence of extratropical circulations in two regions character- 
ized by different r parameter value, say an intensive storm 
track and a relatively stable anticyclonic region. The concept 
of teleconnections of this kind, achieved through the mecha- 
nism of quasi-linear Rossby trains, has both theoretical and 
observational support [Madden and Julian, 1971, Weick- 
mann, 1991]. 

Numerical computations have been carried out using 
software INSITE [Parker and Chua, 1989]. In Figure 2 (a-b) 
we show the chaotic attractors of single Lorenz models 
(3,,/•=0) for a= 10.0, r•=197.4, b=8/3 (Figure 2(a)) and 
r2=211.0 (Figure 2(b)). These attractors are characterized 
by the following spectra of Lyapunov exponents 3,•= 1.87, 
3`2=0, 3,3 = -15.54 (Figure 2(a)) and 3,•=0.78, 3`2=0,3,3 = 
- 14.44. In Figure 2(c) we show the behavior of both above 
mentioned Lorenz systems coupled with 3,= 100 and/• = 1. 
Although this attractor is still chaotic (3,• =0.79, 3,2=0, 3,3 = 
-14.34), trajectory behavior on it is more predictable as its 
Lyapunov dimension, d•.=2.053, is smaller than the dimen- 
sion the of original attractor (d,. =2.121). This dimension in- 
crease is produced by a significant decrease of positive 
Lyapunov exponent (3,• =0.79 in comparison with 3,• = 1.87 
of the original attractor). 

In a second example we consider the coupling of a Lorenz 
system with a linear oscillator 

W: w*) 
(4) 

v - - w*) - 
which in geophysical context represents the tropical atmo- 
sphere [Palmer, 1993, Madden and Julian, 1971, Weick- 
mann, 1991]. Here, fi is taken to be the frequency of some 
dominant internal mode of large-scale variability of the 
tropics, e.g., the Madden-Julian oscillations. In our compu- 
tations we consider fi to be a time dependent random 
variable with uniform distribution in the interval [1.3, 1.7] 
in nondimensional time. V and W represent two phase- 
quadrature components of the tropical oscillations. For 
example W can be considered as representing the Walker 
circulation [Palmer, 1993]. 

Although eq. (4) is stochastic, any particular phase space 
trajectory has the properties of a chaotic trajectory, so we 
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Figure 2. Evolution of Lorenz system; (a) unmodifird first 
system: a=10.0, r=197.4, b=8/3; (b) unmodified second 
system: cr=10.0, r=212.0, b=8/3; (c) attractor of the first 
system controlled by the second system: X= 100.0,/•= 1.0. 

can apply system (4) to control the chaotic behavior of a 
Lorenz model, in the same way as before. 

Application of our chaos control method requires consid- 
eration of the following coupled equations: 

.,•= -oX + oY 

•r = -XZ + rX - Y + X(W- Y) 

•: xY- bZ (S) 

w = -at- w*) 

Examples of numerical calculations for a=10.0, r= 197.5, 
b=8/3 and W' =0 are shown in Figure 3. Previously in 
Figure 2(a) we showed the original attractor of a Lorenz 
system given by eq. (3) with 3,, /•=0 (or eq.(5) with 3,=0), 
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direct benefit concerning the problem of "predicting predict-, 
ability," which is currently a research topic of great interest. 

Finally, we remark that a similar chaos by chaos control- 
ling mechanism, having a different type of coupling, was 
recently proposed to be responsible for stabilization of the 
Earth's obliquity by the Moon [Laskar et al., 1993]. 

Appendix 

Our controlling strategy results in the following dynamical 
system 

Figure 3. Lorenz attractor controlled by random trajectory of 
eq. (4)' fie(1.3, 1.7), W'=0 and 3,= 10.0. 

• = f(x) + ),(y-x) 

9 = g(y)* 
(A1) 

while in Figure 3 the same attractor, modified by coupling 
the Lorenz system with eq. (4) with X= 10.0, is presented. 
Although the attractor of Figure 3 is chaotic, i•s dimension 
is smaller than the dimension of the original chaotic attractor 
of Figure 2(a). Thus the dynamics bf the modified system 
(5) is far more predictable than the dynamic• of a single 
Lorenz model. Its Lyapunov dimension est'unated from time 
series by Wolf's et al. [1985] methods is dL=2.008. This 
dimension decrease is again produced by significant reduc- 
tion of positive Lyapunov exponent (X2 =0.69 in comparison 
with X2 = 1.87 of the original attractor)' 

We would like to note that, despite the fact that in neither 
of our numerical examples the conditions of Propositions 1 
and 2 have been precisely fulfilled, nevertheless application 
of our controlling procedure has allowed us to convert one 
type of chaotic behavior to chaotic behavior which is more 
predictable as we choose parameters X and/• close to those 
that fulfill the above mentioned conditions. For 3, and /• 
which are far away from the conditions of Propositions 1 
and 2 our controlling procedure does not work. 

In the cases considered in this letter the application of a 
continuous control scheme did not result in obtaining 
periodic behavior because the external periodic perturbation 
was not taken in the form of an unstable periodic orbit of 
original chaotic system. If that is done, a similar controlling 
scheme allows us to convert the original chaotic behavior 
into an appropriate periodic one [Pyragas, 1992, 1993, Qu 
et al., 1993]. It should be mentioned here that, if f=g and 
/z=0 in eqs. (1), our controlling procedure simplifies the 
method of synchronization of chaos using continuous control 
[Kapitaniak, 1994]. 

In summary we Propose that tlfis procedure of controlling 
chaos by chaos can be treated as a possible mechanism for 
the so-called extended range atmospheric predictability 
observed in geophysical systems. The results of this simple 
coupling show the great potential influence of the behavior 
of chaotic system on that of another. It is also clear that, in 
a stationary state, when the. variables x and y are close 
together, the control signals (2) are small (under conditions 
of Proposition 2 they converge to each other). This probably 
means that such a coupling might not allow for easy experi- 
mental verification in real geophysical systems. It is, 
however, a mechanism which may account for the existence 
of many unexpected sho rt and relatively predicted features 
in the situations when strongly chaotic behavior might be 
expected. We hope that the results of this letter could be of 

where X, ,u are real n0nnegative parameters. Note that many 
systems can be put in the form of (A1) including the formula- 
tion [Smale, 1967] of the Turing reaction-diffusion theory 
[Turing, 1953] of morphogenesis or the evolution of two 
resistively coupled electrical circuits [Kapitaniak et al., 1993]. 

We assume that the dynamical systems 

:f(x) 

= 

where x,yeR 3 and (A2) have chaotic attractors Af, A s and A 
respectively. Denote the projection of A on the subspace 
x=(x•,x2,x3) T by Ax, and the subspace y=(y•,y2,y3) T by Ay. 

Recalling the definition of topological equivalence of two 
chaotic attractors: namely an attractor Af is equivalent to 

attractor A s if there exists a homeomorphism h: Rn-'R n such 
that h(Af)=A s We have the following propositions 

Proposition 1. 
(i) If f=g and 

Ix(t =0) -y(t =o) 1 

is sufficiently small, then there exists a value of k= 3,+/•, say 
k., such that for k > k., Ax is equivalent to Ay. 

(it) If f=/=g and 3,= oo , then A• is equivalent to A s. 
(iii) If f=/=g and/•= oo, then Ay is equivalent to Af. 

Proof: 
(i) First note that the inequalities 

where j = 1 ..... n, are sufficient for the stability of a matrix [a•j] 
with negative diagonal elements. 

Denote u=x-y, so that from (A1) we have 

= [-(x + + D/I,,=o]u + O(x,y) -- 

• Au . O(x,y) 
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where Df is the Jacobian matrix of f, E is the unit matrix and 
O(x,y) represents the higher order terms. It is obvious that one 

can find k such that matrix A =[aij] is stable, that is u=0 is 
asymptotically stable, and x(t) approaches y(t) as t-,oo. Hence 

An is equivalent to Ay (the homeomorphism h:gn-•R n is 
identity). 

(ii) Equation (A1) can be rewritten as 

½•: ½f(x) + (y-x) 

•,: g(y) + gt(x-y), 

where e = 1/3,. If e =0, the last equation is equivalent to 

x--y 

•, = g(y). 

Thus, Ax is equivalent to Ag (again, the homeomorphism 
h:Rn-'R n is identity). 

(iii) The proof is similar as in the case (ii). 

The second and the third part of the Proposition 1 can be 
improved in the following way: 

Proposition 2. 
For sufficiently small 

I x(t: O) + y(t = O) l 

and e there exists to such that x(t) converges uniformly to y(t) 
as e --, 0 + on all subsets of to < t < oo. 

Proof: The proof is similar to the proof of Theorem 2 in 
[Kocarev and Kapitaniak, 1994]. 
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