
Chooy. Solrrons & Fracralr Vol. 4. No. 7, pp 1193-1209. 1994 
Coovrieht C? 1994 Elrewer Science Ltd 

Pergamon Printed m Great Britain. All rights rcscrved 

0960-0779/94%7.00 + .OO 

Spatio-Temporal Chaos in Closed and Open Systems 

J. BRINDLEY 

Department of Applied Mathematical Studies and Centre for Nonlinear Studies, University of Leeds, Leeds 
LS2 9JT, UK 

K. KANEKO 

Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Komaba, 
Meguro-ku, Tokyo, 153 Japan 

T. KAPITANIAK 

Division of Control and Dynamics, Technical University of Lodz, Stefanowskiego l/15, 90-924 Lodz. Poland 

(Received 28 July 1993) 

Abstract--patio-temporal chaos (temporal chaos coupled with spatial variability) widely occurs in 
turbulent phenomena and is associated with spatial pattern formation. In this review we address 
classical examples of spatio-temporal complexity, develop ideas in the context of coupled map 
lattices and speculate on possible quantifiers for spatio-temporal chaos. 

1. INTRODUCTION: WHAT IS SPATIO-TEMPORAL CHAOS? 

By spatio-temporal chaos (STC) we mean temporal high-dimensional chaos associated with 
spatial pattern dynamics. It occurs widely in turbulent phenomena, including Rayleigh- 
Bernard convection, electrically driven convection in liquid crystals, boiling, combustion, 
MHD turbulence in plasma, solid-state physics (Josephson junctions, spin wave turbu- 
lence), optics, chemical reactions with spatial structure, and so on. It is also important in 
biological information processing involving nonlinear characteristics, for example, neural 
dynamics. Although there is no clear definition for STC, we assume that the number of 
degrees-of-freedom is large and that the dimension (in phase-space) increases with the 
system’s size. 

In the purely temporal case, studies on low-dimensional chaos have expanded rapidly, 
and some understanding has developed. Dynamics of ordered spatial structure has been 
studied in pattern formation. However, though phenomena complex in both space and time 
are common in nature, little basic understanding has yet been developed. We are at an 
exploratory stage, seeking new phenomenology in a jungle of spatio-temporal chaos. 
Understanding the phenomenology may still require much time, but we present evidence in 
Section 5 of a structured hierarchy of qualitative behaviour, which gives support to the idea 
of at least some universality classes of STC. 

As a preliminary, we review briefly in Section 2 some of the methods of recognizing and 
qualifying temporal chaos which may also be of value for STC. In Section 3 we briefly 
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summarize work in the field of spatial chaos, whilst in Section 4 we address a classic 
example of spatio-temporal complexity-turbulent fluid flow. Finally, in Section 6 we 
speculate on possible quantifiers for STC. 

A note on our policy on references is necessary. The vigour of research in this area has 
led to a huge number of published papers. Our references should be taken as examples. 
many containing extensive bibliographies; in no way is our list exhaustive but merely (and 
subjectively) representative. 

2. CHAOS IN TEMPORAL SYSTEMS 

The behaviour of a system which varies only with time is often summarized by one or 
more simple ‘time series’, in each of which the variation with time of a measurable variable 
is exhibited. Such a time series may have one of several broad, qualitative characteristics; it 
may be constant, or simply periodic (though even here ‘the shape’ of the periodic 
oscillation may take an infinite variety of forms). On the other hand it may be more 
complex, perhaps identifiable as multiply-periodic, chaotic or stochastic. A vast literature 
has grown over the last twenty years or so, concerned with methods of detecting and 
quantifying chaos, and we summarise here some results which will undoubtedly be of value 
in developing similar methodology for spatio-temporal chaos. 

The most elementary analytic tool, the Fourier transform, enables us to distinguish 
between the various qualitative forms of behaviour; singly- or multiply-periodic behaviour 
corresponds to discrete spectra with peaks at the appropriate frequencies or sums/multiples 
of frequencies; chaos or stochasticity yield broad-band spectra. However, the distinction 
between deterministic (chaotic) and nondeterministic (stochastic) behaviour is difficult, or 
even impossible to make from spectra alone: the optimal use of information contained in 
the time series in order to make this distinction is the subject of much recent research 
[l-5]. 

The essential characteristic of chaos is that the time behaviour, though complicated, is 
deterministic, involving only a finite number of degrees-of-freedom, but is sensitively 
dependent on initial conditions, so that a small perturbation of the initial condition grows 
exponentially. At large time the evolution of a dissipative chaotic system carries it towards 
a (usually fractal) subspace of the full phase-space, ‘a strange attractor’. 

This divergence of neighbouring solution trajectories provides the basis for a quantifying 
tool, the set of Lyapunov exponents [6, 71, which measure the local rate of divergence. 
Thus, for example, if we are concerned with the solution to an equation 

f = f(x), x = [x,, .Q, ., .%,I E u, f = [I”,, . ‘, f,]’ (1) 

where U is an open set in I%“, and if TU, is the tangent space to U at the point x E LJ, 

then the tangent vector y E TU, satisfies the variational equation 

Y = A{x(t)Iy (2) 

where A(x) is the Jacobian matrix, given by A(x) = 6f/6x. Now if we take an initial point 
x(O), and an initial perturbation y(0) in the tangent space TU,(,,, the maximum one-dimen- 
sional Lyapunov exponent is given by 

where x(t) is a solution of (1) and y(t) is a solution of the variational equation (2). 
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The Lyapunov exponent is one of the most important measures by which to characterize 
a particular dynamics. Any system having at least one positive Lyapunov exponent is 

defined to be chaotic, i.e. if Amax > 0. The magnitude of the Lyapunov exponent reflects the 
timescale on which the system dynamics becomes unpredictable, or on which transients 
decay. 

When the information on the system is limited to one or more time series, with no 
knowledge of any generating equation or map, the calculation of Lyapunov exponents 
requires a vital preliminary step, the reconstruction of the phase-space from the time series 
[l]. This can be achieved by the method of delays [S, 91; thus, if we have a single signal 
measured as a function of time, x(t), we sample the data at intervals r,, take a sample of 
M such values, and create a ‘trajectory’, X(t), of the system in M-dimensional space by 
constructing the vectors 

Xi(f) = {x(t), x(t - r,), . . . x(t - (M - l)rJ} 

for a number IZ of discrete times, t = it,, i = 1, . . ., n. Here we call M the embedding 
dimension, r, the delay time and rs sampling time; it is clear that rd must be an integer 

multiple of r,. 
It is then known that [9], if the series is generated by the explicit system X = f(X), the 

points Xi(t) lie on a set diffeomorphic to the attractor, A, of the system. Using this 
approach we can deduce properties of A from the set of vectors Xi. 

Many authors have addressed the problem of optimising rd, rs and M in order to yield 
maximum information on the system. One of the more successful approaches, the singular 
value decomposition method [lo, 111, is based on the Karhunen-Lorve decomposition 
theorem [12]. This procedure finds a set of orthogonal vectors spanning the embedding 
space. The number of orthogonal vectors forms an estimate of the dimension of the 
smallest space that contains a system’s attractor. To find the delay time, rd, which makes 
x(t) and x(t + rd) independent, this method uses the autocorrelation function, and suggests 
that the time at which the autocorrelation function passes through 0 is a suitable choice for 
rd. A rather similar method, which we might call the well-adapted basis method, has also 
been developed recently [13]. A third method, the mutual information method [14, 151, 
uses a different approach, dependent on the calculation of joint probability densities of 
information obtained at two times, T and T + rd. Though the method is powerful in 
principle, it is difficult to apply in practice, since the estimation of joint probability 
densities is not straightforward; effectively the method needs very long time series to give 
reliable results. 

Much recent effort has gone into predicting the future behaviour of nonlinear deter- 
ministic systems when a history of past behaviour is known, but when the underlying 
equations are either unknown or too complicated for direct solution. 

The problem is essentially one of interpolation in phase-space on a basis of a swarm of 
neighbouring points (vectors in the embedding space arising from earlier samplings of the 
time series). The reader is referred to Smith [5] for an excellent exposition of this very 
recent approach. 

Aside from the distinction between chaotic and stochastic behaviour, the character of the 
behaviour of a system depends crucially on its number of degrees-of-freedom, and 
especially on the character and distribution of its attractors. A number of quantitative tools 
are available, including Kolmogorov-Sinai entropy, and various information dimensions 
[16]. An excellent collection of such methods is found in Mayer-Kress [17], and many 
important advances have since been made [18, 211. The possible extension of some of these 
approaches to the quantification of spatio-temporal chaos is discussed in Section 5. 
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3. SPATIAL PURELY STATIC CHAOS 

The concept of spatial chaos is not yet as developed as that of temporal chaos. Indeed, 
the concept of temporal chaos is heavily dependent on the ‘time-like’ character of 
time-dependence; in other words, we have an evolutionary process. Based on some starting 
condition, we are concerned with behaviour for large time, t, or even, in some formal 
sense, as t -+ m. Spatial phenomena are commonly confined within some domain Q, with 
boundary 6Q, on which appropriate boundary conditions are specified. However, although 
all spatial domains must be eventually finite, many configurations are so relatively 
extended that time-like behaviour in space may be possible over wide ranges. The most 
convincing example is the classical Euler elastica, in which the existence of chaotic loop 
sequences in a static configuration was conjectured by Holmes and Marsden [22] and 
subsequently explored more fully by Mielke, Holmes, Thompson, El Naschie, Kapitaniak, 
Moon and others [23-271. Other examples from condensed matter physics (elastically 
coupled chains of atoms in a periodic potential) and biophysics (protein chains) have strong 
similarities, whilst branching or confluent static structures, as seen in biological morpho- 
genesis or rivulet patterns, constitute a different class of candidates for spatial chaos. A 
recent review by El Naschie [27] contains extensive references to these and other problems. 

In the case of the elastica, it may be shown [28] that the ODE in the space variable 
describing the static equilibria of an elastica with periodic axial imperfections 

c#+, + sin 4 = a sins (4) 

where C#J is the gradient of displacement, and s is arc length, is identical to the equation for 
a periodically excited simple pendulum, i.e. 

2 + sinZ = a sin t (5) 

Not surprisingly, we see a spatially chaotic distribution of stationary twists or loops in 
experiments on very long (laboratory) or infinitely long (numerical) periodically imperfect 
elastica subjected to appropriate conditions on + and & at s = 0 as shown in Fig. 1. 

Holmes [29] has studied the effects of small spatial or temporal perturbations of the 
Sine-Gordon equation 

4 + & + sin@ = F(s. T) (6) 

for the case F(s, t) = F(s), and subject to the boundary conditions 

qbs = 0 at s = +m. (7) 

It appears that purely spatial chaos is not seen (all stationary non-periodic solutions are 
unstable) and all “stable” solutions must have spatio-temporal variation. 

When F(s, t) = -EC@,, and we have the following form of boundary conditions 

&s(O) = EH, &(I) = E(H + J(t)) (8) 

it is again found that all stationary or periodic solutions are unstable (except that infinite 
sets of stable orbits with arbitrarily long periods are created at the global bifurcation which 
generates chaotic solutions. 

Overall, the subject of purely spatial chaos is in an initial state, but motivation from 
problems ranging from shell buckling to protein folding supports the importance of ongoing 
research in this field [30, 31, 97-991. 
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Fig. 1. The spatial plots, following ref. [26], for inperfect elastica; (a) & + sin@= asinws; w = 1, a = 0.01, 
(b) $I,, + sin 4 + 6@, = a sin ws sin @; 6 = 0.15, w = 1.58, a = 0.94. 

4. AN EXAMPLE OF SPATIO-TEMPORAL COMPLEXITY: TURBULENT FLUID FLOW 

Perhaps the most widely studied candidate for description as spatio-temporal chaos is 
turbulent fluid flow. Though no two fluid dynamicists agree on a formal definition of 
turbulence, there is wide agreement that it is characterized by a broad-band distribution of 
scales of motion in both time and space, and extreme sensitivity to initial conditions and 
parameter values. There is consequently a persistent faith amongst at least a section of the 
scientific community that some turbulent flows might be comprehensible in terms of 
solutions to a (relatively low-order) ODE representation of the full Navier-Stokes 

equations (321. 
Whilst no formal reduction of the Navier-Stokes equations to an equivalent set of ODES 

has been achieved (other than under the most demanding symmetry conditions), the 
observations in some real fluid systems of behaviour which is unmistakably similar to 
chaotic behaviour in a dynamical system sustains this faith. The most convincing example is 
the observation of period-doubling and other universal phenomena in Rayleigh-Bernard 
convection in a small box [33-351; more recently evidence has been obtained of similar 
behaviour in Taylor-Couette flow with small aspect ratio. The suggestion of a chaotic 
regime preceding regimes of ‘soft’ and then ‘hard’ turbulence as the Reynolds number is 
increased. Quite recently, these two turbulence phases are reproduced with the use of 
coupled map lattice methods described in Section 5 corresponding to convection [96]. 

Intermittency is a phenomenon similarly shared between fluid mechanics and low- 
dimensional dynamical systems. Again the comparison is convincing in closed flows, less so 
in open flows in channels or boundary layers [37-391. Most observations have been 
concerned with conditions near laminar-turbulent transition. Attempts to fully investigate 
turbulent flows, for example measuring dimension or Kolmogorov entropy at Reynolds 
numbers far above critical for transition, have had mixed results, which may be typified by 
analysis of atmospheric data over a variety of time-scales [40, 411. In general, though the 
results apparently suggest that the dimension of the attractor is finite, it is nevertheless so 
large as to inhibit any transfer of concepts of the dynamics of low-order systems. This does 
not, of course, preclude the construction of very low-order conceptual models, linking 
through a set of nonlinear ODES or difference equations the variation of integral properties 



1198 J. BKINDLEY et al 

of the system, e.g. models of ocean-atmosphere interactions predicting El Nino type 
phenomena [42]. Such models have often proved immensely valuable in alerting investiga- 
tors to qualitative possibilities and in orientating more detailed programmes of research. 

The most striking qualitative contrast of spatio-temporal behaviour of fluids occurs 
between flows which are closed and flows whcih are open. To a certain extent, the 
definition of closed and open is arbitrary, but essentially by a closed flow we mean a flow 
for which the constraints exerted by boundaries are so strong that all parts of the flow are 
instantly influenced by all other parts. Closed-flow structure is determined globally, and the 
system of fluid and boundaries is self-contained in the sense that no information can flow 
into or out of it. If the system is not closed it is open, and in this case flow structure can be 
local in character, instantaneously unrelated to structure in other regions but prey to 
unknown ‘information’ fluxes. 

An alternative but similar classification into large-scale and small-scale flows has been 
proposed [43], using the concept of a correlation length L, based on a space correlation 
function 

C(r - r’) = {(U(Y, t> - (u))(u(r’, t) - (ZL))) 

which is presumed to vary like exp [-r/L,] as r + 00. 

A small system then has L, > L, where L is a typical geometrical dimension; it may be 
regular or chaotic in time but coherent in space. The contrasting case in which L, < L 
displays behaviour incoherent in space; at moderately supercritical Reynolds number there 
may be ‘spatial chaos, characterized by the chaotic evolution of coherent structures roughly 
of size L,‘. At a local level of observation a large-scale flow appears open, receiving 
external inputs of information. 

Closed flows have been much studied because of their conceptual simplicity and because 
of the richness of behaviour they exhibit as the Reynolds number is increased and 
sequences of laminar patterns are eventually succeeded by a form of turbulence. Flow 
structure is dominated by global ‘modes’, dictated by the boundary constraints (e.g. 
Rayleigh-Bernard convection cells, Taylor vortices), and the dynamics of the modes, which 
may or may not correspond to separately identifiable flow features, can lead to a form of 
‘phase turbulence’ in which time variations at a point are undoubtedly chaotic, but in which 
well-defined spatial structure still remains [44-481. The energy of the flow may be 
concentrated in a small number of such modes, and it may be possible by a formal 
projection of the flow field onto a complete set of normal modes to obtain a low-order 
system whose dynamics models the flow quite well near to a point in parameter space of 
multiple bifurcation [49, 501. 

Open-flow systems, by our definition, are not dominated by global modes, and flow 
structure is at least partly determined by local dynamics. Nevertheless, the occurrence of 
recognizable coherent structures in such flows is widely reported [see 511. 

Pipe or channel flows which are laterally constrained but longitudinally open, and 
therefore open to influence from the input of information from ‘upstream’, received early 
attention, especially in respect of the occurrence of intermittency and its relationship to 
intermittency in simple dynamical systems. Later studies, especially by Sreenivasan and 
several co-workers, developed these ideas in the context of multi fractal structures, (see 

]521). 
Another open flow has inspired imaginative (and successful) attempts to obtain, by direct 

use of observational data, a sequence of empirical eigenfunctions whose evolution is 
determined by a set of coupled nonlinear ODES [53, 541. This work was, however, 
concerned with the wall region of a turbulent boundary layer, in which structures are 
strongly influenced by the geometrical constraint of the wall. More truly open flows, such 
as wakes or other free shear layers, may prove less amenable to such analysis. 
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The intrinsic intractability of the Navier-Stokes equation has motivated a search for 
simpler extended systems in which spatio-temporal phenomena may be studied. We may 
replace the continuum by discrete distribution of nodes, each of which is specified by a 
‘state’ or ‘phase’ which evolves according to a discrete time-map. These nodes may be 
chosen to have interactions of diffusive or advective nature, local or global, so as to form a 
coupled map lattice (CML) and we discuss this model in detail in the next section. 

5. SPATIO-TEMPORAL CHAOS IN COUPLED MAP LATTICES 

The concept of a coupled map lattice (CML) has been useful in studying spatio-temporal 
chaos. A CML is a dynamical system with discrete time (‘map’), discrete space (‘lattice’), 
and a continuous state. It usually consists of dynamical elements on a lattice each 
interacting (‘coupled’) among suitably chosen sets of other elements [55-73, 78-80, 83-871. 

The modelling of a dynamical phenomenon with spatial structure through a CML is 
carried out as follows. We first decompose its dynamics into simple procedures, and then 
replace each procedure by a parallel dynamics on a lattice. The coupled map lattice 
dynamics is then investigated by carrying out each procedure successively. Schematically it 
can be written as 

x,(i) + x,(i) = F,[. ., x,,(i - l), &(i), x,,(i + l), . . .], 

x,,(i) + x”(i) = F,[. . .) xL(i - l), XL(i), xL(i + l), . . .] 

. . . 

X “...’ + x,,+1(i) = Fk[. . .) x;-‘(i - l), x;...‘(i), x::...‘(i + l), . . .] (9) 

by using k successive procedures F;, j = 1, 2 . . ., k. 
Here i is a spatial lattice point and n is a discrete time-step. Note that the lattice spacing 

and temporal unit are not microscopic but finite sized; x,,(i) is a coarse-grained quantity at 
this ‘semi-macroscopic’ level. 

As an example, we might attempt to model some phenomenon in a fluid, specified by a 
nonlinear process and diffusion. In the CML approach we decompose the dynamics into 
local evolution and spatial diffusion processes. As a simple choice we adopt a logistic map 
for the local behaviour 

x:,(i) = “t-(x;(i)), f(Y) = 1 - ay2, 

and a discrete Laplacian operator for the diffusion 

xn+l(i) = (1 - &)x:,(i) + (&/2){xA(i + 1) + xL(i - l)}. 

Combining the above two processes our dynamics is given by 

x,+r(i) = (1 - 4f{xn(i) + (e/2)]f{xn(i + 1)) + f{xJi - 1)l. (10) 

the above CML has been investigated extensively as a standard model for spatio-temporal 
chaos. We stress that the local evolution and spatial diffusion processes are carried out 
separately; this is the key simplifying feature of CMLs. In studies of CMLs we search for 
novel qualitative universality classes of behaviour, without worrying about the details of 
phenomenology. We expect that such universality classes will exist, and will eventually 
constitute the language for describing and classifying STC more generally. It is convenient 
to develop our ideas on the basis of equation (10). 
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5.1. Phenomenology of spatio-temporal chaos as exhibited in a CML 

In the model (lo), successive transitions lead from frozen random pattern to pattern 
selection to spatio-temporal intermittency, and finally to fully developed spatio-temporal 
chaos [RX]. This class of successive changes is found in a large class of spatially extended 
dynamical systems with spatial symmetry, giving support for our search for qualitative 
universality. 

5.1 .l. Frozen random pattern. The CML (10) exhibits period-doubling of kinks with 
increase of the ‘nonlinearity’. As a result of the doublings, domains of various sizes are 
formed. After some number of doublings the system has a chaotic appearance. Because of 
the sensitive dependence on initial conditions, a homogeneous state is unstable and a 
domain structure is spontaneously created even if we start from an almost homogeneous 
initial condition (see Fig. 2(a)). The frozen random pattern leads to spatial bifurcation. 
Even if the model is homogeneous in space, attractors can have strong spatial dependence. 
In a large domain, the motion is quite chaotic, while it is almost period-eight at smaller 
domains, period-four for much smaller domains, and period-two for the smallest ones. 
Distribution of domain sizes can differ by initial conditions. We can choose initial 
conditions so that attractors have an arbitrarily large domain. In general we expect that the 
number of attractors increases exponentially with the system size. 

5.1.2. Pattern selection with suppression of chaos. As the nonlinearities increase further. 
larger domains start to be unstable and split into smaller domains. Initial conditions are no 
longer remembered (Fig. 3), and, through the transient process, domains of a few special 
sizes are selected. After the selection the pattern of domains is frozen and does not move 
in space. Selected sizes of domains are such that the dynamics of the domains is less 
chaotic within the frozen random pattern. This process may be understood in the sense that 
the diffusion tries to homogenize a system, while the chaotic motion makes the system 
inhomogeneous because of the sensitive dependence on initial conditions. These two 

, 

Fig. 2. Space-amplitude plot for the coupled logistic lattice (10). Amplitudes x,,(i) are overlaid for 1000 time steps 
after discarding 100000 transients, starting with random initial conditions: c = 0.4, a = 1.46, N = 160. 



tend encies conflict with each other. In a large domain the chaos is so strong that it splits 
into smaller domains (one may regard this as splitting by the ‘chaos pressure’). Once a 
dom ain structure is formed with the suppression of chaos, the conflict is resolved, and the 
dom ain structure is stabilized. This picture leads to the conjecture that a pattc :rn with 
smal Her Lyapunov exponents is selected. Numerical results seem to support this COI ijecture. 
The simplest example of pattern selection in system (10) is the selection of a zigzag ; pattern 
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Fig. 3(a) and (b) 
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Fig. 3. Plot of x,,(i) as a function of space. 200 sequential patterns x,(i) are depicted with time (per some time 
steps). starting from random initial condition. Unless otherwise mentioned, the system size N is chosen to be 100. 
(a) a = 1.66. E = 0.4, plotted per 4 time-steps, after discarding 400 initial transient steps, (b) a = 1.76, F = 0.005, 
plotted per 90 time-steps, after discarding 90000 initial transient steps, (c) a = 1.735, F = 0.35, plotted per 128 

time-steps, after discarding 90000 initial transient steps. 

(domain size = 1, i.e. k = l/2). There can be two regions of the zigzag pattern with 
different phase of oscillation. As time goes to infinity, a single domain of zigzag pattern 
covers the whole space. In the transient time regime, we have seen defects as a domain 
boundary between two zigzag patterns with different phases of oscillation. The defect is 
localized but moves in space; the motion of defects is chaotic in time, as is verified by 
positive Lyapunov exponents. Defects pair-annihilate, and the domain size of a connective 
zigzag region increases with time. The motion of defects is well described by Brownian 
motion. Indeed there exists a well-defined diffusion constant from numerical results. We 
have also estimated Kolmogorov-Sinai (KS) entropy for the defect from the sum of 
positive Lyapunov exponents. Roughly speaking, the diffusion constant of a defect 
increases proportionally with its KS entropy as the nonlinearity is increased. KS entropy 
gives the rate of memory in the phase-space. If our diffusion is triggered by the chaos of a 
defect, the present Brownian motion can be represented roughly by a rate of ‘coin tossing’ 
per some ‘memory’ time which is inversely proportional to the KS entropy. Our 
observation of the proportionality between KS entropy and diffusion constant supports the 
above idea. 

5.1.3. Spatio-temporal intermittency. Transition from an ordered pattern to fully devel- 
oped spatio-temporal chaos occurs via spatio-temporal intermittency (STI). In ST1 there 
coexist laminar motion and turbulent bursts in space-time. Each space-time pixel can be 
classified into laminar (L) and bursts (B). Since the recognition of ST1 in 1984 [55], studies 
have been growing both experimentally and theoretically. So far, two types of ST1 have 
been recognized. In the first type [55, 64, 731, there is no spontaneous creation of bursts; if 
a site and its neighbours are laminar, it is still laminar in the next step. Before the onset of 
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ST1 a spatially homogeneous, temporally periodic state is stable. Possible relationships of 
type-l ST1 with directed percolation have been intensively investigated. Results are similar 
qualitatively, but there seems to be a quantitative difference [64]. The first example for this 
type is given in the coupled logistic lattice (10) at a parameter region for period-three 
window and very weak coupling (see Fig. 3(b)). In the second type of ST1 there seems to 
exist [58, 631 spontaneous creation of turbulent bursts as long as some coarse-grained 
reduction of states is used. There is some probability of creation of bursts even if all the 
states of a site and its neighbours are laminar. It might be possible to introduce other states 
between laminar and bursts so that no spontaneous creation of bursts from the laminar 
states is possible, but it is not yet clear whether such partition is possible for only a finite 
number of states. This ST1 is observed in transitions with a state spatial pattern (Fig. 3(c)). 
Even before the onset of ST1 there is a spatial structure as in the second case above. So far 
this type of ST1 is observed as a transition from local to global chaos. In type 2 STI, the 
temporal change corresponding to the selective pattern has a very long memory, leading to 
selective-flicker noise. The dynamical form factor P(k, o) (power of Fourier transform of 
the space-time pattern xn(i)) exhibits CL-@ noise (p = 1.9) only for the wavenumber k = k,, 
the wavenumber of selected pattern [58]. It is worth remarking that phenomena identifiable 
as type-2 ST1 have recently been observed in various experiments with fluids. In all the 
examples the transition is associated with a spatial structure (a selected wavenumber), and 
includes spontaneous creation of turbulent states from a laminar region. Examples include 
instances of Bernard convection [88, 901, and the Faraday instability of a wave [91]. In 
two-dimensional electric convection of a liquid crystal, ST1 has been found at the collapse 
of selected chequerboard patterns [89]. The transition is again chaos/chaos transition 
admitting spontaneous creation of turbulent states. Flicker-like noise, with 

W,, 0) = 0 -I.‘) for the wave number k, corresponding to the chequerboard pattern, is > 
again found. Another related phenomenon associated with the onset of global turbulence is 
soliton turbulence, first found in a coupled circle lattice [59]. In lattices of circle maps, 

f(x) = x + Q + [K/277] sin (~xc), 

there is a kink structure which propagates with a constant velocity. At the onset of global 
turbulence interactions of kinks can create turbulent bursts, or a nucleus emitting kinks. 
The motion is turbulent but it consists of propagation of kinks and their interactions. See 
also [82] for soliton turbulence in cellular automata. 

5.1.4, Quasi-stationary supertransients and fully developed spatio-temporal chaos. In 
low-dimensional dynamical systems chaos is structurally unstable, and small windows of 
nonchaotic behaviour are interspersed in any parameter regime. In fully developed 
spatio-temporal chaos we do not, in general, observe such window structures, despite the 
fact that the homogeneous state with a stable cycle corresponding to a window is linearly 
stable also in a coupled system. Of course, if we start from the vicinity of a homogeneous 
state, our system is attracted into that state within a finite number of time-steps. The 
volume of suitable initial conditions, however, decreases very rapidly with the system size 
(roughly exponentially). As an example, we have examined whether fully developed 
spatio-temporal chaos is really the ‘ultimate attractor’ for our logistic lattice at a parameter 
corresponding to the period-3 window. For small couplings and lattice size we have always 
observed an escape from a chaotic state to the homogeneous periodic state. The transient 
time for the escape, however, diverges exponentially with the system size, so that if the 
system size is, for example, larger than ten lattice sites, it is practically impossible to wait 
and see if the system really hits the homogeneous attractor. Such very long transients, 
which we call ‘supertransients’ are often encountered in spatio-temporal chaos. In the 
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supertransient regime behaviour is quasi-stationary without any symptoms of decay of 
quantities characterizing spatio-temporal chaos, such as Lyapunov exponent, KS entropy, 
and dimension. It is almost impossible to forecast when a transient will terminate; 
furthermore, the quasi-stationarity makes it almost impossible to distinguish transients from 
attractors. We might argue that the ‘stability’ of fully developed spatio-temporal chaos is 
sustained by a product of supertransients of this type. It is worth remarking here that 
Rossler has introduced the term ‘hyperchaos’ as chaos in which the number of positive 
Lyapunov exponents is more than one. Extending his idea we might speculate that fully 
developed spatio-temporal chaos may be described as (hyper)chaos in space; a direct 
product of many chaotic systems. The idea of this construction originates in the synthesis of 
Landau’s picture of turbulence and hyperchaos [70]. Landau has tried to understand 
turbulence as a direct product of periodic states (leading to a quasi-periodic state with 
many incommensurate frequencies). This direct product state is, however, unstable because 
of frequency lockings and nearby strained attractors [56, 751. On the other hand, a 
turbulence model as a direct product of chaotic states (hyperchaos) is structurally stable by 
the above mechanism. 

5.1.5. Spatial bifurcation in open flow models. Sections 5.1.1-5.1.4 have described the 

phenomenology in a system with spatial symmetry; this has some similarities to a closed 
fluid flow. In the open system (like a pipe flow) the coupling is asymmetric: there is a 
strong influence from the upstream direction, as represented by the 6/6x term in partial 
differential equations. In our CML model, open flow is easily simulated by spatially 
asymmetric coupling. Here we take the extreme limit, a one-way coupled model 

x,,+,(i) = (1 - E)f{X,,(i)l + ef{4,(j - I>>. (11) 

This model exhibits spatial period doubling [60. 611 and selective amplification of noise. Its 
dynamical state changes from fixed point to period-2, period-4, . . . successively as the 
lattice point goes downstream (Fig. 4(a)). After some doublings, the system goes to a 
turbulent state. Such spatial bifurcation is also found in experiments in pipe flow. As the 
nonlinearity is increased, successive changes among (a) flow :with randomly chosen 
patterns, (b) flow with selective patterns, (c) transmission of defects, (d) spatio-temporal 
intermittency, (d) fully developed spatio-temporal chaos are observed. This one-way 
coupled model provides simple abstraction of the open fluid flow discussed in Section 4. 

Extension of the diffusively coupled map lattice to higher dimensions is straightforward. 
In a two-dimensional system we have again observed frozen random pattern, pattern 
selection, spatio-temporal intermittency, and fully developed spatio-temporal chaos [84]. 
In a larger coupling, or in a higher dimension frozen domain, structures are unstable and 
the formation of spatial structure is more difficult. For a lattice with a dimension greater or 
equal to 2, it is expected that there is an upper bound on the coupling strength, beyond 
which any frozen domain pattern loses its stability. Indeed, even in a one-dimensional 
lattice, we often encounter a floating domain if the coupling is very large. 

In an infinite dimensional lattice, i.e. in a mean-field coupled model, we have a novel 
class of dynamical transitions which has been called clustering. It is an open question if 
there is a critical dimension for the mean-field behaviour in our CML. 

6. QUANTIFIERS FOR SPATIO-TEMPORAL CHAOS 

Traditionally, we often use Fourier transforms in space and time to characterize spatio- 
temporal patterns. Power spectra of Fourier transforms in space/time (dynamical form 
factor) are still useful to study spatio-temporal chaos. In particular, the appearance of 
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Fig. 4. Space-amplitude plot for the one-way coupled logistic lattice (11); E = 0.3. Amplitudes xn(i) are overlayed, 
after discarding 10000 transients, starting with a random initial condition; (a) a = 1.48, N = 200, overlaid over 

1000 steps, (b) a = 1.6, N = 100, overlaid over 4 X 4 steps per 4 steps. 

long-range correlations in ST1 is characterized by power-law behaviour in power spectra. 
Also phase changes of patterns may be studied by the use of order parameters correspond- 
ing to pattern dynamics [58]. 

Besides these traditional quantifiers, it is interesting to extend quantifiers of dynamical 
systems to spatial systems. We may then see how spatio-temporal chaos may be 
understood from the terminology of dynamical systems, and also establish relationships 
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with traditional quantifiers. To complete that task we need a thermodynamic theory of 
spatio-temporal chaos which is still missing; here we attempt to take some first hesitant 
steps. 

(a) Lyapunov analysis gives information on the tangent space of an orbit [55, 57, 581. 
The Lyapunov spectrum is a measure of how a small deviation expands with a chaotic 
orbit. With the pattern changes described in Section 5, the spectrum shape changes from 
step-like (a frozen random pattern), to concave (at intermittency), and then convex (for 
fully developed spatio-temporal chaos) as the nonlinearity is increased. This convex shape 
is in strong contrast with the spectra for the Kuramoto-Sivashinski equation [93] and for 
the Gledzer model for turbulence [94]. From the spectra, the density of KS entropy and 
Lyapunov dimension are obtained [57]. Since the spectrum has a size-invariant form when 
suitably scaled [57], the density of entropy and dimension are well defined. This density 
gives a size-independent measure for the strength of chaos. The Lyapunov vector 
(eigenvector for the spectrum) gives eigenmodes with different directions of instability. 
Lyapunov vectors corresponding to chaotic modes are localized in real space through a 
mechanism similar to Anderson localization [57]. To distinguish laminar and turbulent 
regions in space-time, subspace-time Lyapunov spectra [72] are introduced as the 
extension of Lyapunov analysis to local space-time patches. The subspace-time Lyapunov 
exponents measure the degree of instability in a space-time patch. By sampling these 
exponents we can construct a distribution function of subspace-time. In STI, the 
distribution is clearly separated between positive and negative parts, whilst in fully 
developed spatio-temporal chaos it approaches Gaussian form. 

(b) To measure the amplification of a moving disturbance in an open flow (convective 
instability) it is useful to introduce co-moving Lyapunov spectra [57, 61, 671. They are the 
spectra in a Galilean frame moving with a finite velocity. The spectra are especially 
important in convective chaos [61] and also useful in analysis of the flow of information. In 
an open-flow system we have to distinguish absolute instability from convective instability. 
If a small perturbation against a reference state grows in a stationary frame we speak of 
‘absolute instability’, while if the perturbation grows only in some frames moving with 
finite velocities we speak of ‘convective instability’. In spatio-temporal chaos with open 
flow, a system often shows only convective instability. In this case the conventional 
Lyapunov exponents are negative, even if the spatio-temporal change in the variable is 
clearly chaotic. Only within a certain band of velocity uL < V < u,,, does the co-moving 
Lyapunov exponent take a positive value [61]. This co-moving Lyapunov exponent clearly 
characterizes chaos in open flow. Co-moving Lyapunov exponents are also useful in 
estimating the propagation speed of a small disturbance [57] from a lattice point to other 
lattice points. Only within a band of velocity giving a positive co-moving Lyapunov 
exponent will a disturbance be propagated with amplification. 

(c) Chaos is a source of information, as first clarified by Shaw [95]. Spatio-temporal 
chaos has the ability of information creation and selective transmission through space [57]. 
Co-moving mutual information flow is introduced to measure how information flows in 
space-time even in turbulent media. In soliton turbulence the propagation of information 
by solitons can be confirmed through this quantifier. Even in fully developed spatio- 
temporal chaos there remains some finite information flow [87]. 

(d) In low-dimensional chaos a dimension algorithm has been used as a standard 
diagnostic technique to distinguish chaos from random data. In spatio-temporal chaos, the 
dimension itself is an extensive quantifier and its density is more important. Using 
multi-point measurement, it is possible to estimate the dimension density from experi- 
mental data [67]. Singular value decomposition with Kahuren-Lowe technique may be 
useful for practical applications [lo- 121. 
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Theoretical formulation for these quantifiers has just been started, and most problems 
are left for the future. Bunimovich and Sinai [66] have constructed a statistical mechanical 
formulation for CMLs. Their theory is so far limited to fully developed spatio-temporal 
chaos in CMLs with complete hyperbolicity. It is a future problem in mathematical physics 
to formulate our phase-transition in pattern dynamics within the terms of statistical 
mechanics. 

Finally, a self-consistent argument for the distribution of patterns has recently been 
formulated with the use of the Perron-Frobenius operator [68, 721. It is possible to 
estimate the onset parameter of ST1 to this self consistent approximation. 

Data from CMLs will provide an ideal test bed for these possible quantifiers of STC 
before they are used for the much more difficult purpose of characterizing universal 
behaviour classes (if they exist) in more complex physical situations like turbulent flows. 
The (distant) objective is that of predicting classes of universal behaviour in known 

systems, and, conversely, that of recognizing crucial underlying physics from spatio- 
temporal data, an end not yet achieved satisfactorily even for purely temporal systems. 
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